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Abstract 

Some inequalities for certain bivariate means are obtained. In particular, 
inequalities for those introduced by Seiffert. 

1. Introduction 

For 0, >ba  with ,ba ≠  the first and second Seiffert’s means ( )baP ,  

and ( )baT ,  were introduced by Seiffert [15, 17] as follows: 
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Recently, the inequalities for means have been the subject of intensive 
research [1-14, 16, 18-21]. In particular, many remarkable inequalities for 
the Seiffert’s means can be found in the literature [4, 6-8, 11-13]. 

Let ( ) ( ) ( ) ( ) ( ) ,,,2,,2, abbaGbabaAbaabbaH =+=+=  

( ) ( ) ( ) ,1, 1 abab abebaI −=  and ( ) ( ) ( )ababbaL oglogl, −−=  be the 

harmonic, arithmetic, geometric, identric, and logarithmic means of two 
positive real numbers a and b with .ba ≠  Then, 

{ } ( ) ( ) ( ) ( ) ( ) { }.,max,,,,,,min babaAbaIbaLbaGbaHba <<<<<<  

(1.3) 

In [15], Seiffert proved 

( ) ( ) ( ),,,, baIbaPbaL <<  

for all 0, >ba  with .ba ≠  

The following bounds for the first Seiffert’s mean ( )baP ,  in terms of 

the power mean ( ) (( ) ) ( )02, 1 ≠+= rbabaM rrr
r  were presented by 

Jagers in [8]: 

( ) ( ),,, 3221 baMbaPM <<   (1.4) 

for all 0, >ba  with .ba ≠  

Hästö [7] found the sharp lower bound for the first Seiffert’s mean as 
follows: 

( ) ( ),,,ogl2ogl baPbaM <π   (1.5) 

for all 0, >ba  with .ba ≠  

In [16], Seiffert proved 
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for all 0, >ba  with .ba ≠  
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In [4], the authors found the greatest value α  and the least value β  

such that the double inequality ( ) ( ) ( ) ( ) <<α−+α baPbaHbaA ,,1,   

( ) ( ) ( )baHbaA ,1, β−+β  holds for all 0, >ba  with .ba ≠  

In [14], the authors proved 

.22,2 3232 AeIAIeAI <<<<  (1.7) 

The purpose of the present paper is to obtain the inequalities of type 
(1.7) for the Seiffert’s means in terms of the identric mean. 

2. Main Results 

In what follows, we will assume, without loss of generality, that 
.0>> ba  

Theorem 2.1. For the first Seiffert’s mean, the double inequality 

( ) ( ) ( )baIbaPbaIe ,,, <<
π

 

holds, where the constants 
π
e  and 1 are the  best possible. 

Proof. Let .12 >= bat  Consider the function 
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Its logarithmic derivative is 
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Simple computations lead to 
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where 
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( ) ( ),2 43 ttgtg =′  (2.18) 
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for ,1>t  hence ( )tg4  is strictly decreasing in [ ).,1 ∞+  It follows from 

(2.20) and (2.18) together with the monotonicity of ( )tg4  that ( ) ,03 <′ tg  

hence ( )tg3  is strictly decreasing in [ ).,1 ∞+  From (2.17) and (2.15) 

together with the monotonicity of ( ),3 tg  we know that ( ) ,02 <′ tg  hence 

( )tg2  is strictly decreasing in [ ).,1 ∞+  

Repeating the above procedures, we can get ( ) ,0<′ tg  hence ( )tg  is 

strictly decreasing in [ ).,1 ∞+  

From (2.4) and (2.2) together with the monotonicity of ( ),tg  we know 

that ( ) ,0<′ tf  hence ( )tf  is strictly decreasing in [ ).,1 ∞+  

Hence 
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and 
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t

 

The proof of the inequality ( ) ( ) ( )baIbaPbaIe ,,, <<
π

 is complete. 

Since ( )tf  is continuous for ,1>t  it follows that the constants 
π
e  and 1 

are the best possible.   
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Theorem 2.2. For the second Seiffert’s mean, the double inequality 

( ) ( ) ( )baIebaTbaI ,2,,
π

<<  

holds, where the constants 1 and 
π
e2  are the best possible. 

Proof. Let .1>= bat  Consider the function 
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Its logarithmic derivative is 
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Simple computations lead to 
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We can see clearly that ( ) 03 >′′ tg  for ,1>t  hence ( )tg3′  is strictly 

increasing in [ ).,1 ∞+  From (2.40), we have ( ) 03 >′ tg  for ,1>t  hence 
( )tg3  is strictly increasing in [ ).,1 ∞+  

It follows from (2.38) and (2.36) together with the monotonicity of 
( )tg3  that ( ) ,02 >′ tg  hence ( )tg2  is strictly increasing in [ ).,1 ∞+  From 

(2.35) and (2.33) together with the monotonicity of ( ),2 tg  we know that 
( ) ,01 >′′′ tg  hence ( )tg1′′  is strictly increasing in [ ).,1 ∞+  
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Repeating the above procedures, we can get ( ) ,0>′ tg  hence ( )tg  is 

strictly increasing in [ ).,1 ∞+  

From (2.25) and (2.23) together with the monotonicity of ( ),tg  we 

know that ( ) ,0>′ tf  hence ( )tf  is strictly increasing in [ ).,1 ∞+  

Hence 

( ) ( ) ,1lim
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+→
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t

 

and 
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t

 

The proof of the inequality ( ) ( ) ( )baIebaPbaI ,2,,
π

<<  is complete. 

Since ( )tf  is continuous for ,1>t  it follows that the constants 1 and 
π
e2  

are the best possible.  
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