INEQUALITIES FOR THE SEIFFERT'S MEANS IN TERMS OF THE IDENTRIC MEAN

SHAOQIN GAO

College of Mathematics and Computer Science Hebei University Baoding, 071002 P. R. China e-mail: gaoshq@amss.ac.cn

Abstract

Some inequalities for certain bivariate means are obtained. In particular, inequalities for those introduced by Seiffert.

1. Introduction

For a, b > 0 with $a \neq b$, the first and second Seiffert's means P(a, b)and T(a, b) were introduced by Seiffert [15, 17] as follows:

$$P(a, b) = \frac{a - b}{4 \arctan(\sqrt{a/b}) - \pi}.$$
(1.1)

$$T(a, b) = \frac{a - b}{2 \arctan \frac{a - b}{a + b}}.$$
(1.2)

Keywords and phrases: inequalities, bivariate means, the Seiffert's means.

This research is partly supported by the Education Department of Hebei Province (2009107).

Received July 3, 2011

@ 2011 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 26D15.

SHAOQIN GAO

Recently, the inequalities for means have been the subject of intensive research [1-14, 16, 18-21]. In particular, many remarkable inequalities for the Seiffert's means can be found in the literature [4, 6-8, 11-13].

Let H(a, b) = 2ab / (a + b), A(a, b) = (a + b) / 2, $G(a, b) = \sqrt{ab}$, $I(a, b) = 1 / e(b^b / a^a)^{1/(b-a)}$, and $L(a, b) = (b - a) / (\log b - \log a)$ be the harmonic, arithmetic, geometric, identric, and logarithmic means of two positive real numbers a and b with $a \neq b$. Then,

$$\min\{a, b\} < H(a, b) < G(a, b) < L(a, b) < I(a, b) < A(a, b) < \max\{a, b\}.$$
(1.3)

In [15], Seiffert proved

for all a, b > 0 with $a \neq b$.

The following bounds for the first Seiffert's mean P(a, b) in terms of the power mean $M_r(a, b) = ((a^r + b^r)/2)^{1/r} (r \neq 0)$ were presented by Jagers in [8]:

$$M_{1/2} < P(a, b) < M_{2/3}(a, b),$$
 (1.4)

for all a, b > 0 with $a \neq b$.

Hästö [7] found the sharp lower bound for the first Seiffert's mean as follows:

$$M_{\log 2/\log \pi}(a, b) < P(a, b),$$
 (1.5)

for all a, b > 0 with $a \neq b$.

In [16], Seiffert proved

$$P(a, b) > \frac{3A(a, b)G(a, b)}{A(a, b) + 2G(a, b)} \text{ and } P(a, b) > \frac{2}{\pi}A(a, b),$$
(1.6)

for all a, b > 0 with $a \neq b$.

24

In [4], the authors found the greatest value α and the least value β such that the double inequality $\alpha A(a, b) + (1 - \alpha)H(a, b) < P(a, b) < \beta A(a, b) + (1 - \beta)H(a, b)$ holds for all a, b > 0 with $a \neq b$.

In [14], the authors proved

$$I < A < \frac{e}{2}I, \quad A_{2/3} < I < \frac{2\sqrt{2}}{e}A_{2/3}.$$
 (1.7)

The purpose of the present paper is to obtain the inequalities of type (1.7) for the Seiffert's means in terms of the identric mean.

2. Main Results

In what follows, we will assume, without loss of generality, that a > b > 0.

Theorem 2.1. For the first Seiffert's mean, the double inequality

$$\frac{e}{\pi} I(a, b) < P(a, b) < I(a, b)$$

holds, where the constants $\frac{e}{\pi}$ and 1 are the best possible.

Proof. Let $t^2 = a / b > 1$. Consider the function

$$f(t) = \frac{P(t^2, 1)}{I(t^2, 1)} = \frac{e(t^2 - 1)t^{\frac{2t^2}{1 - t^2}}}{4\arctan t - \pi}.$$
(2.1)

Its logarithmic derivative is

$$\frac{f'(t)}{f(t)} = \frac{4t \ln t}{(t^2 - 1)^2 (4 \arctan t - \pi)} g(t),$$
(2.2)

where

$$g(t) = 4 \arctan t - \pi - \frac{(t^2 - 1)^2}{t(t^2 + 1)\ln t}.$$
(2.3)

Simple computations lead to

$$\lim_{t \to 1^+} g(t) = 0, \tag{2.4}$$

$$g'(t) = \frac{g_1(t)}{t^2(t^2+1)^2 \ln^2 t},$$
(2.5)

where

$$g_{1}(t) = 4t^{2}(t^{2} + 1)\ln^{2} t - (t^{6} + 5t^{4} - 5t^{2} - 1)\ln t + (t^{2} - 1)^{2}(t^{2} + 1), (2.6)$$
$$\lim_{t \to 1^{+}} g_{1}(t) = 0, \qquad (2.7)$$

$$g_1'(t) = 8(2t^3 + t)\ln^2 t + 6(-t^5 - 2t^3 + 3t)\ln t + 5t^5 - 9t^3 + 3t + \frac{1}{t}, \quad (2.8)$$

$$\lim_{t \to 1^+} g_1'(t) = 0, \tag{2.9}$$

$$g_1''(t) = 8(6t^2 + 1)\ln^2 t + (-30t^4 - 4t^2 + 34)\ln t + 19t^4 - 39t^2 + 21 - \frac{1}{t^2},$$

$$\lim_{t \to 1^+} g_1''(t) = 0, \tag{2.11}$$

$$g_1''(t) = 2tg_2(t), \tag{2.12}$$

where

$$g_2(t) = 48 \ln^2 t + (-60t^2 + 44 + \frac{8}{t^2}) \ln t + 23t^2 - 41 + \frac{17}{t^2} + \frac{1}{t^4}, \quad (2.13)$$

$$\lim_{t \to 1^+} g_2(t) = 0, \tag{2.14}$$

$$g_2'(t) = \frac{2}{t} g_3(t), \qquad (2.15)$$

$$g_3(t) = 48 \ln t + \left(-60t^2 - \frac{8}{t^2}\right) \ln t - 7t^2 + 22 - \frac{13}{t^2} - \frac{2}{t^4}, \qquad (2.16)$$

$$\lim_{t \to 1^+} g_3(t) = 0, \tag{2.17}$$

$$g'_3(t) = 2tg_4(t), (2.18)$$

where

$$g_4(t) = \left(-60 + \frac{8}{t^4}\right) \ln t - 37 + \frac{24}{t^2} + \frac{9}{t^4} + \frac{4}{t^6}, \qquad (2.19)$$

$$\lim_{t \to 1^+} g_4(t) = 0, \tag{2.20}$$

$$g'_{4}(t) = \frac{4}{t^{5}} \left(-8\ln t - 15t^{4} - 12t^{2} - 7 - \frac{6}{t^{2}} \right) < 0,$$
(2.21)

for t > 1, hence $g_4(t)$ is strictly decreasing in $[1, +\infty)$. It follows from (2.20) and (2.18) together with the monotonicity of $g_4(t)$ that $g'_3(t) < 0$, hence $g_3(t)$ is strictly decreasing in $[1, +\infty)$. From (2.17) and (2.15) together with the monotonicity of $g_3(t)$, we know that $g'_2(t) < 0$, hence $g_2(t)$ is strictly decreasing in $[1, +\infty)$.

Repeating the above procedures, we can get g'(t) < 0, hence g(t) is strictly decreasing in $[1, +\infty)$.

From (2.4) and (2.2) together with the monotonicity of g(t), we know that f'(t) < 0, hence f(t) is strictly decreasing in $[1, +\infty)$.

Hence

$$f(t) < \lim_{t \to 1^+} f(t) = 1,$$

and

$$f(t) > \lim_{t \to +\infty} f(t) = \frac{e}{\pi}.$$

The proof of the inequality $\frac{e}{\pi}I(a, b) < P(a, b) < I(a, b)$ is complete. Since f(t) is continuous for t > 1, it follows that the constants $\frac{e}{\pi}$ and 1 are the best possible. Theorem 2.2. For the second Seiffert's mean, the double inequality

$$I(a, b) < T(a, b) < \frac{2e}{\pi} I(a, b)$$

holds, where the constants 1 and $\frac{2e}{\pi}$ are the best possible.

Proof. Let t = a / b > 1. Consider the function

$$f(t) = \frac{T(t,1)}{I(t,1)} = \frac{e(t-1)}{2t^{\frac{t}{t-1}}\arctan\frac{t-1}{t+1}}.$$
(2.22)

Its logarithmic derivative is

$$\frac{f'(t)}{f(t)} = \frac{\ln t}{(t-1)^2 \arctan \frac{t-1}{t+1}} g(t), \qquad (2.23)$$

where

$$g(t) = \arctan \frac{t-1}{t+1} - \frac{(t-1)^2}{(t^2+1)\ln t}.$$
(2.24)

Simple computations lead to

$$\lim_{t \to 1^+} g(t) = 0, \tag{2.25}$$

$$g'(t) = \frac{g_1(t)}{(t^2 + 1)^2 \ln^2 t},$$
(2.26)

where

$$g_1(t) = (t^2 + 1)\ln^2 t - 2(t^2 - 1)\ln t + (t - 1)^2(t + \frac{1}{t}), \qquad (2.27)$$

$$\lim_{t \to 1^+} g_1(t) = 0, \tag{2.28}$$

$$g_1'(t) = 2t \ln^2 t + \left(-2t + \frac{2}{t}\right) \ln t + 3t^2 - 6t + 2 + \frac{2}{t} - \frac{1}{t^2}, \qquad (2.29)$$

$$\lim_{t \to 1^+} g_1'(t) = 0, \tag{2.30}$$

$$g_1''(t) = 2\ln^2 t + \left(2 - \frac{2}{t^2}\right)\ln t + 6t - 8 + \frac{2}{t^3}, \qquad (2.31)$$

$$\lim_{t \to 1^+} g_1''(t) = 0, \tag{2.32}$$

29

$$g_1''(t) = \frac{1}{t} g_2(t), \qquad (2.33)$$

where

$$g_2(t) = 4 \ln t + \frac{4}{t^2} \ln t + 6t - 2 - \frac{2}{t^2} - \frac{6}{t^3}, \qquad (2.34)$$

$$\lim_{t \to 1^+} g_2(t) = 0, \tag{2.35}$$

$$g'_2(t) = \frac{1}{t^3} g_3(t),$$
 (2.36)

$$g_3(t) = 4t^2 - 8\ln t + 8 + 6t^3 + \frac{18}{t}, \qquad (2.37)$$

$$\lim_{t \to 1^+} g_3(t) > 0, \tag{2.38}$$

$$g'_{3}(t) = 8t - \frac{8}{t} + 18t^{2} - \frac{18}{t^{2}}, \qquad (2.39)$$

$$\lim_{t \to 1^+} g'_3(t) = 0, \tag{2.40}$$

$$g_3''(t) = 8 + \frac{8}{t^2} + 36t + \frac{36}{t^3}.$$

We can see clearly that $g'_3(t) > 0$ for t > 1, hence $g'_3(t)$ is strictly increasing in $[1, +\infty)$. From (2.40), we have $g'_3(t) > 0$ for t > 1, hence $g_3(t)$ is strictly increasing in $[1, +\infty)$.

It follows from (2.38) and (2.36) together with the monotonicity of $g_3(t)$ that $g'_2(t) > 0$, hence $g_2(t)$ is strictly increasing in $[1, +\infty)$. From (2.35) and (2.33) together with the monotonicity of $g_2(t)$, we know that $g''_1(t) > 0$, hence $g''_1(t)$ is strictly increasing in $[1, +\infty)$.

SHAOQIN GAO

Repeating the above procedures, we can get g'(t) > 0, hence g(t) is strictly increasing in $[1, +\infty)$.

From (2.25) and (2.23) together with the monotonicity of g(t), we know that f'(t) > 0, hence f(t) is strictly increasing in $[1, +\infty)$.

Hence

$$f(t) > \lim_{t \to 1^+} f(t) = 1,$$

and

$$f(t) < \lim_{t \to +\infty} f(t) = \frac{2e}{\pi}.$$

The proof of the inequality $I(a, b) < P(a, b) < \frac{2e}{\pi} I(a, b)$ is complete. Since f(t) is continuous for t > 1, it follows that the constants 1 and $\frac{2e}{\pi}$ are the best possible.

References

- Y. M. Chu and W. F. Xia, Two sharp inequalities for power mean, geometric mean and harmonic mean, Journal of Inequalities and Applications, Vol. 2009, Article ID 741923, 6 pages, (2009).
- [2] Y. M. Chu and W. F. Xia, Inequalities for generalized logarithmic means, Journal of Inequalities and Applications, Vol. 2009, Article ID 763252, 7 pages, (2009).
- [3] Y. M. Chu and B. Y. Long, Best possible inequalities between generalized logarithmic mean and classical means, Abstract and Applied Analysis, Vol. 2010, Article ID 303286, 13 pages, (2010).
- [4] Y. M. Chu, Y. F. Qiu, M. K. Wang and G. D. Wang, The optimal convex combination bounds of arithmetic and harmonic means for the Seiffert's mean, Journal of Inequalities and Applications, Article ID 436457, dio: 10.1155/436457, 7 pages, (2010).
- [5] T. Hara, M. Uchiyama and S. E. Takahasi, A refinement of various mean inequalities, Journal of Inequalities and Applications 2(4) (1998), 387-395.
- [6] P. A. Hästö, A monotonicity property of ratios of symmetric homogeneous means, Journal of Inequalities in Pure and Applied Mathematics 3(5) (2002), 1-54 (Article 71).

- [7] P. A. Hästö, Optimal inequalities between Seiffert's mean and power mean, Mathematical Inequalities and Applications 7(1) (2004), 47-53.
- [8] A. A. Jagers, Solution of problem 887, Nieuw Archief voor Wiskunde 12 (1994), 230-231.
- [9] B. Y. Long and Y. M. Chu, Optimal inequalities for generalized logarithmic, arithmetic and geometric means, Journal of Inequalities and Applications, Vol. 2010, Article ID 806825, 10 pages, (2010).
- [10] B. Y. Long and Y. M. Chu, Optimal power mean bounds for the weighted geometric mean of classical means, Journal of Inequalities and Applications, Vol. 2010, Article ID 905679, 6 pages, (2010).
- [11] E. Neuman and J. Sändor, On the Schwab-Borchardt mean, Mathematica Pannonica 14(2) (2003), 253-266.
- [12] E. Neuman and J. Sändor, On certain means of two arguments and their extensions, Int. J. Math. Math. Sci. 2003(16) (2003), 981-993.
- [13] E. Neuman and J. Sändor, On the Schwab-Borchardt mean, Mathematica Pannonica 17(1) (2006), 49-59.
- [14] E. Neuman and J. Sändor, Copanion inequalities for certain bivariate means, Applicable Analysis and Discrete Mathematics 3 (2009), 46-51.
- [15] H. J. Seiffert, Problem 887, Nieuw Archief voor Wiskunde 11(2) (1993), 176.
- [16] H. J. Seiffert, Ungleichungen f
 ür einen bestimmten mittelwert, Nieuw Archief voor Wiskunde 13(2) (1995), 195-198.
- [17] H. J. Seiffert, Aufgabe β16, Die Wurzel 29 (1995), 221-222.
- [18] M. Y. Shi, Y. M. Chu and Y. P. Jiang, Optimal inequalities among various means of two arguments, Abstract and Applied Analysis, Vol. 2009, Article ID 694394, 10 pages, (2009).
- [19] M. K. Wang, Y. M. Chu and Y. F. Qiu, Some comparison inequalities for generalized Muirhead and identric means, Journal of Inequalities and Applications, Vol. 2010, Article ID 295620, 10 pages, (2010).
- [20] J. J. Wen and W. L. Wang, The optimization for the inequalities of power means, Journal of Inequalities and Applications, Vol. 2006, Article ID 46782, 25 pages, (2006).
- [21] W. F. Xia, Y. M. Chu and G. D. Wang, The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means, Abstract and Applied Analysis, Vol. 2010, Article ID 604804, 9 pages, (2010).