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Abstract

Some inequalities for certain bivariate means are obtained. In particular,
inequalities for those introduced by Seiffert.

1. Introduction

For a, b > 0 with a # b, the first and second Seiffert’s means P(a, b)

and T'(a, b) were introduced by Seiffert [15, 17] as follows:

-b
P(a,b) = a . 1.1
(a.0) 4arctan(yJa/b)—n D
-b
Ta,b:a—. 1.2
(@) 2arctan =% (1-2)
a+b
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Recently, the inequalities for means have been the subject of intensive
research [1-14, 16, 18-21]. In particular, many remarkable inequalities for
the Seiffert’s means can be found in the literature [4, 6-8, 11-13].

Let H(a, b) = 2ab/ (a + b), Ala, b) = (a + b)/ 2, G(a, b) = Jab,

I(a, b) =1/ e’ / a® )1/(b7a), and L(a, b) = (b — a)/ (logb — loga) be the
harmonic, arithmetic, geometric, identric, and logarithmic means of two

positive real numbers ¢ and b with a # b. Then,
min{a, b} < H(a, b) < G(a, b) < L(a, b) < I(a, b) < A(a, b) < max{a, b}.
(1.3)
In [15], Seiffert proved
L(a, b) < P(a, b) < I(a, b),
for all a, b > 0 with a # b.

The following bounds for the first Seiffert’s mean P(a, b) in terms of

the power mean M,(a, b)=((a" +0" )/2)1/r(r # 0) were presented by
Jagers in [8]:
M1/2 < P(a, b) < Mg/g(a, b), (14)

forall ¢, b > 0 with a = b.

Hasto [7] found the sharp lower bound for the first Seiffert’s mean as

follows:

Mlog2/10gn(aa b) < P(a7 b)’ (15)
forall a, b > 0 with a # b.

In [16], Seiffert proved

3A(a, b)G(a, b)

Pla, b) > 208y + 2G(a, 0)

and P(a, b) > %A(a, b), (1.6)

forall a, b > 0 with a = b.
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In [4], the authors found the greatest value o and the least value B
such that the double inequality aA(a, b)+ (1 — a)H(a, b) < P(a, b) <
BA(a, b) + (1 — B)H(a, b) holds for all a, b > 0 with a # b.

In [14], the authors proved
e 2v2
I<A<§I, A2/3<I<7A2/3. (17)

The purpose of the present paper is to obtain the inequalities of type
(1.7) for the Seiffert’s means in terms of the identric mean.

2. Main Results

In what follows, we will assume, without loss of generality, that

a>b>0.

Theorem 2.1. For the first Seiffert’s mean, the double inequality

%I(a, b) < P(a, b) < I(a, b)
holds, where the constants % and 1 are the best possible.

Proof. Let t? = a /b > 1. Consider the function

212

P2, 1) e(t? — 1)1

f) = I(¢2,1) ~ 4arctant — 1’ @1
Its logarithmic derivative is
f'@) 4t Int
= g(@), (2.2)
f() (t? —1)*(4 arctan ¢ — )
where
2 2
g(t) = 4arctant — n — (= -1) (2.3)

t(t2 +1)In¢



26 SHAOQIN GAO
Simple computations lead to

lim g(t) = 0, (2.4)

to1*

: g1(t)
) = , 2.5
¢ t2(t? +1)* In%¢ @9

where
g1() = 422 + 1)In? ¢t - (¢8 + 5¢* =52 —1)Int + (¢2 - 122 +1),(2.6)

lim g(t) = 0, 2.7)

t—1*
gi(t) = 8(2t% + t)In% ¢ + 6(=t® — 26> + 3t)In¢ + 5t° — 9> + 3¢ +%, (2.8)

lim g} (t) = 0, (2.9)

t>1*

gl(t) = 8(6t% +1)In% ¢ + (-30t* — 442 + 34)In¢ + 19t* — 392 + 21 —iz,
t

(2.10)
lim g/(t) = 0, @2.11)

t—1*
81(t) = 2tg5(t), (2.12)

where
go(t) = 48 In?t + (—60¢2 + 44 + % )Int + 232 — 41 + % + %, (2.13)
t t t

lim go(t) = 0, (2.14)

t—1*

, 2
g5(t) = ?g:a(t), (2.15)
g3(t):481nt+(—60t2—%)lnt—7t2+22—%—%, (2.16)
t t t

lim g5(t) = 0, 2.17)

o1t



INEQUALITIES FOR THE SEIFFERT’S MEANS ...

g5(t) = 2624(0),

where
8 24 9 4
lim g4(¢) = 0,
t—>1t

g4(t) = A sme-1st —122-7-8 ) <o,
t° 2
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(2.18)

(2.19)

(2.20)

(2.21)

for ¢ > 1, hence g4(t) is strictly decreasing in [l, +). It follows from

(2.20) and (2.18) together with the monotonicity of g,(¢) that g5(¢) < 0,

hence g3(t) is strictly decreasing in [1, +®©). From (2.17) and (2.15)

together with the monotonicity of gs(t), we know that g5(¢t) < 0, hence

g5(t) is strictly decreasing in [1, +o).

Repeating the above procedures, we can get g'(¢) < 0, hence g(t) is

strictly decreasing in [1, +o).

From (2.4) and (2.2) together with the monotonicity of g(¢), we know

that f'(¢) < 0, hence f(t) is strictly decreasing in [1, +o).

Hence

f(t) < lim f(t) =1,
to17"
and

f©) > lim () ==

The proof of the inequality %I (a, b) < P(a, b) < I(a, b) is complete.

Since f(¢) is continuous for ¢ > 1, it follows that the constants £ and 1
T

are the best possible.

O
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Theorem 2.2. For the second Seiffert’'s mean, the double inequality

I(a, b) < T(a, b) < % I(a, b)

holds, where the constants 1 and 2e are the best possible.
T

Proof. Let ¢ = a /b > 1. Consider the function

Tt 1) e(t —1)
M=t~ o oy
2t~ arctan
t+1
Its logarithmic derivative is
"(t Int
};((t)) i (t —1)* arctan t- £
t+1

where

t-1  (t-1)
t+1 (2 +1)Int

g(t) = arctan

Simple computations lead to

lim g(t) = 0,

t—1*

g1(t)

gt) = 45—,
(t? +1)%In?¢

where
g1(t) = (12 +1)In2 ¢ — 2062 —1)Int + (¢t - 12(¢ + % ),
lim g,(¢) = 0,
t—1*

gi(t):2t1n2t+(—2t+%)lnt+3t2—6t+2+%—i2,
t

lim gi(t) = 0,

t—1*

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
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2

N

gl”(t):21n2t+(2—£2)1nt+6t—8+
t t

lim g{(t) = 0,

to>1"

" 1
g1 = g0,
where
2 6
3 b

gz(t)=4lnt+ilnt+6t—2———
t2 2t

lim g5(¢) = 0,

t—>1*
, 1
g2(t) = = &83(t),
t

g5(t) = 4t> - 81Int + 8 + 61° +%,

lim g3(t) > O,

t—>1*
gi(t) =8-S 182 - 18
t 2
lim g5(¢) = 0,
t—>1*

g5(t) = 8+-2 1361438
t2 t3
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(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

We can see clearly that g5(t) >0 for ¢ >1, hence gi(¢) is strictly

increasing in [I, +o). From (2.40), we have gj(¢t) > 0 for ¢ > 1, hence

g35(t) is strictly increasing in [1, +o).

It follows from (2.38) and (2.36) together with the monotonicity of
g3(t) that g5(¢) > 0, hence g5(t) is strictly increasing in [1, +»). From
(2.35) and (2.33) together with the monotonicity of g4(t), we know that

gl(t) > 0, hence gj(t) is strictly increasing in [1, +o).
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Repeating the above procedures, we can get g'(t) > 0, hence g(¢) is

strictly increasing in [1, +).

From (2.25) and (2.23) together with the monotonicity of g(¢), we
know that f'(¢) > 0, hence f(¢) is strictly increasing in [1, +).

Hence

f(t) > lim f(t) =1,
1"
and

F0) < lim f2) = 2.

The proof of the inequality I(a, b) < P(a, b) < % I(a, b) is complete.

Since f(¢) is continuous for ¢ > 1, it follows that the constants 1 and 2Ze
n

are the best possible. O
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